
1

Probabilistic Design of Slopes

K. S. Li
Department of Civil Engineering, University College, The University of New South Wales, Canberra, 
Australia

P. Lumb
Department of Civil Engineering, The University of Hong Kong

This paper discusses some improvements on the first-order second-moment (FOSM) probabilistic approach 
to slope design. The stability model by Morgenstern and Price is used for the formulation of the performance 
function, thus enabling the FOSM method to be applied to the probabilistic assessment of a general slip surface. 
A new solution scheme is also used herein for Morgenstern and Price’s method. It does not require iterations 
for the calculation of the interslice forces and the derivatives of the performance function can be evaluated 
analytically. The reliability index βHL defined by Hasofer and Lind is used as an index of safety measure. It has 
the advantage of being “invariant,” that is, its value does not depend on the format of the performance function, 
a property considered lacking in the conventional reliability index. Reference is also made to the probabilistic 
modelling of soil profiles. The importance of the correlation structure of soil properties is highlighted and its 
effect on the reliability index βHL is discussed.

Key words: slope stability, safety factors, reliability index, probability of failure, general slip surface, rigorous 
stability model.

Cet article traite d’améliorations apportées à l’approche probabilistique de premier-ordre second-moment 
(FOSM) pour le calcul des talus. Le modèle de stabilité de Morgenstern et Price est utilisé pour la formulation de 
la fonction de performance permettant ainsi d’appliquer la méthode FOSM à l’évaluation probabilistique d’une 
surface générale de glissement. Une nouvelle solution est également utilisée ici pour la méthode de Morgenstern 
et Price. Elle ne requiert pas d’itérations pour le calcul des forces entre les tranches et les dérivées de la fonction 
de performance peuvent être évaluées analytiquement. L’indice de fiabilité βHL défrni par Hasofer et Lind est 
utilisé comme indice de la mesure de stabilité. Il a l’avantage d’être “invariant”, c’est-à-dire que sa valeur ne 
dépend pas du format de la fonction de performance, une propriété qui est considérée comme manquante dans l’
indice de fiabilité conventionnel. L’on fait référence également à la modélisation probabilistique des profils de 
sol. L’importance de la structure de corrélation des propriétés de sol est mise en lumière et son effet sur l’indice 
de fiabilité βHL est aussi discuté.

Mots clés: stabilité des pentes, coefficients de sécurité, indice de fiabilité, probabilité de rupture, surface générale 
de rupture, modèle rigoureux de stabilité.

[Traduit par to revue]

Introduction

The safety of a slope is conventionally assessed by 
means of the factor of safety. It is seen that the factor 
of safety (FOS), F, is not a consistent measure of 
risk. Slopes with the same value of F may exhibit 
different risk levels depending on the variability of 
the soil properties. As the variability of soil properties 
changes with soil type and location, the choice of a 
suitable value of F would tend to rely mainly on local 
experience. Given the results of soil testing and other 
relevant information for the slope design, the question 
is often asked, “How large need the factor of safety be 
to be large enough?” The question is difficult to answer 
without regard to the failure probability of the slope.

As a result, there have been attempts in recent years 
to use a probabilistic approach for analyzing the safety 
of slopes. The variability in soil properties is taken 
into account and the failure probability is assessed. 
The major elements of such a probabilistic analysis are 
the statistical modelling of the soil properties in the 
field and the appropriate technique for calculating the 
risk of slope failure. The former has been addressed by 
Vanmarcke (1977a, 1984) and Li and White (1987a). 
This paper discusses some new developments of the 
technique for analyzing the reliability of slopes. 

Reliability calculations are currently based on 
simplified stability models such as the ordinary method 
of slices and simplified Bishop’s method. The reliability 
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index β is used as an alternative risk measure to the 
usual factor of safety. These methods have limitations, 
since the use of simple stability models may not be 
sufficient for describing the performance of more 
complex slip surfaces. Moreover, the reliability index 
so defined gives a “variant” definition of risk measure. 
This presents a problem, as the values of β obtained 
from different formats of the performance function 
cannot be compared directly. 

The approach presented herein adopts the stability 
model by Morgenstern and Price (1965) for the 
formulation of the performance function and the 
reliability index defined by Hasofer and Lind (1974). 
The latter is an “invariant” risk measure and hence 
all equivalent formats of the performance function 
yield the same reliability index. The use of the above 
approach is illustrated by a worked example and a 
case study.

Performance Function

In a probabilistic approach, the failure - safety state of 
a slope can be described by the so-called performance 
function G(X), where X denotes the vector of input 
parameters. The performance function is usually 
defined in such a way that failure of the slope is 
indicated by G(X) < 0 and safety by G(X) > 0. The 
hypersurface given by

G(X) =	0	 (1)

partitions the vector space X into two distinct regions, 
namely, the safety region of G(X) > 0 and the failure 
region of G(X) < 0. The hypersurface in Eq. (1) is 
called the limit state surface or boundary. The failure 

probability Pf is as follows:

Pf = Pr (G(X) < 0)	 (2)

In current approaches, G(X) is formulated using 
simplified stability models such as the ordinary 
method of slices (Yucemen et al. 1973; Lee et al. 
1983; Bao and Yu 1985) or the simplified Bishop’
s method (Alonso 1976; Tobutt and Richards 1979; 
Tobutt 1982; Félio et al. 1984; Bergado and Anderson 
1985). A rigorous model has not been used because 
the conventional solution scheme for the generalized 
procedure of slices does not provide a direct procedure 
for evaluating the interslice forces. As a result, the 
interslice forces need to be calculated by means of 
iterations, which also means that the derivatives 
of G(X) required for the implementation of the 
probabilistic analysis must be evaluated numerically. 
Use of a rigorous model would therefore become 
much more involved.

In this paper, the rigorous stability by Morgenstern 
and Price is used. The original formulation by 
Morgenstern and Price is very complicated and 
difficult to use in the context of probabilistic analysis. 
A unified solution scheme developed recently 
by Li and White (1987c) for the formulation of 
Morgenstern and Price’s method is therefore used 
herein. This enables the performance function to be 
defined explicitly without recourse to iteration for the 
calculation of the interslice forces. Furthermore, the 
derivatives of G(X) can be evaluated analytically.

Some of the symbols and notations used in the 
derivation of G(X) are defined in Figure 1. The 
subscript i denotes properties pertaining to the ith 
slice and the superscript ' represents effective stress 
properties. The symbol ˜ indicates the spatial average 
of individual slices, which are numbered from 1 to n 
in the positive x-direction. The following are the basic 
equations (Li and White 1987b, 1987c):

Gm (X) = {[ ˜ c i '
i=1

n

∑ Δxi + (ΔWi + ΔTi − ˜ u iΔxi)ti]miymi
−[ΔQiyQi

+ (ΔWi + ΔTi)ymi
tanα i −ΔTixmi

]}

−(Eb yb − Ea ya + Tb xb + Ta xa )

Gf (X) = {[ ˜ c i
i=1

n

∑ 'Δxi + (ΔWi + ΔTi − ˜ u iΔxi)ti]mi−[ΔQi + (ΔWi + ΔTi)tanα i]} − (Eb − Ea )

ΔTi =
Ei−1 −

Ti−1

λf (xi)
+ [ ˜ c i 'Δxi + (ΔWi − ˜ u iΔxi)ti]mi − (ΔQi + ΔWi tanα i)

1
λf (xi)

− timi + tanα i

, i =1,n

ΔTi = Tb − ΔTn−1,   i = n

    

⎫ 

⎬ 

⎪ 
⎪ 

⎭ 

⎪ 
⎪ 

(3)

(4)

(5)
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where  = the average effective cohesion over the 
base of the slice;  = the average density over the 
slice; ti = the coefficient of shearing resistance, tanøi' ; 
ΔWi = ΔPi + piΔxi + Ai ; mi = sec2αi / (1 + ti tan αi); 
f(x) = the interslice force function� prescribing the 
variation of the inclination of the resultant interslice 
force; λ = a multiplication factor (to be determined).

The subscripts m and f in Eqs. (3) and (4) signify 
that the performance functions are based on the 
overall moment equilibrium and the force equilibrium 
condition respectively. Eq. (3) can be viewed as 
the subtraction of the total disturbing moment from 
the total resisting moment about point O. When the 
realization of the input parameters is such that the 
total resisting moment is less than the total disturbing 
moment (i.e., Gm(X) < 0), failure is implied. On the 
other hand, safety is indicated by Gm(X) > 0. A similar 
interpretation can be attributed to Gf(X).

In deriving Gm(X) and Gf(X), the variation of tanøi'  
is assumed uniform over the base of each slice, the 
average value of tanøi' of the slice being represented by 
the value ti at the midpoint of the slice. Theoretically, 
the moment arms xmi and ymi should also be regarded 
as random variables. The variability of xmi and ymi

 
should, however, be small unless Δxi is large. For 
practical purposes, they can be treated as deterministic 
quantities measured from the centres of the bases of 
the slices. 

It can be seen that Eq.(5) involves only the 
interslice forces on the left of each slice. With the 
known conditions at the left x = xo, all the interslice 
forces can be calculated explicitly in succession 
without the iteration required in conventional 
procedures. Because of this, the derivatives of 
the performance functions Gm(X) and G f(X) can 
be evaluated analytically. A comprehensive list of 
formulae for the derivatives of Gm(X)  and Gf(X)  is 
given in the Appendix.

The failure probabilities inferred from Gm(X) and 
Gf(X) would generally be different. However, the 
value of λ can be adjusted so that the values of Pf 
obtained from both performance functions are equal. 
This concept has been used for obtaining the rigorous 
solution of the factor of safety (e.g., Morgenstern and 
Price 1965; Li and White 1987c).

Morgenstern and Price’s method is chosen as the 
stability model in this work because it is commonly 
accepted as one of the accurate methods for slope 
stability analysis, and also because of its robustness 
and ability to incorporate some other models as special 
cases. However, other models based on the generalized 
procedure of slices could also be used in lieu of 
Morgenstern and Price’s method. Using the unified 
solution scheme by Li and White (1987c), it is only 
necessary to replace the subroutines for the calculation 
of ΔTi and its derivatives with respect to the basic 
input parameters. The solution procedure for other 
� Some examples of this function are shown in Figure 2.

models is the same as that of Morgenstern and Price’s 
method described herein. A list of the expressions of 
ΔTi for different stability models can be found in Li 
and White (1987c).

Random Field Model

Denote the value of a soil property at a point t = (x, y, z) 
by x(t). In general x(t) can be decomposed into a trend 
component g(t) and a random component ε(t) with 
zero mean value, viz.,

x(t) = g(t) + ε(t) (6)

Except for the sample points, the realization (i.e., 
the actual value) of a soil property at location t is not 
known and must therefore be regarded as a random 

Figure 1. Definitions and notations used in the 
generalized procedure of slices: (a) external forces 
acting on slip surface; (b) forces acting on a slice
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variable. The realization of a soil property at location 
t is, in general, different from that at location t' even 
within a so-called homogeneous soil profile. To 
model the soil property correctly, one has to consider 
infinitely many random variables at all locations t. This 
important probabilistic nature of the soil property has 
not been properly recognized in much of the current 
literature on probabilistic slope design. Very often, 
the soil property is represented as a single random 
parameter. Examples of this are many (e.g., Matsuo 
and Kuroda 1974; A-Grivas et al. 1979; A-Grivas and 
Nadeau 1979; Tobutt and Richards 1979; He and Wei 
1979; Webb 1980; Chowdhury 1981; Tobutt 1982, Lee 
et al. 1983; Sivandran and Balasubramaniam 1982; 
Bao and Yu 1985; Smith 1985; Young 1985). This 
has the implicit implication that the soil property is 
perfectly correlated over the soil profile, which also 
means that the realization of the property is the same at 
all locations. For example, if the cohesive strength at 
point A is 10 units, the strength at all other locations is 
also 10 units. If this is the true statistical representation 
of the soil profile, one sample will be adequate to 
establish the in situ property of the soil and there will 
be no uncertainty involved in the estimation of the soil 
property. Obviously, this is not the case for a real soil 
profile. As will be seen later, the assumption of perfect 
correlation also leads to gross overestimation of the 
failure probability of slopes.

The discussion here will  be confined to a 
homogeneous random field, i.e., a soil profile with 
constant mean trend and statistical properties, but a 
more general treatment is given elsewhere (Li and 
White 1987a). In a homogeneous random field, the 
variation of x(t) is described by means of the first- and 
second-order statistical moments (Vanmarcke 1977a, 
1984).

E{x(t)} = g(t) = m = constant	 (7a)

var {x(t)} = var{ε(t)} = σ2 = constant	 (7b)

cov {x(t), x(t')} = cov {ε(t), ε(t')} = σ2ρ(v)	 (7c)

E{ }, var { }, and cov { } are the expected value, 
variance, and covariance respectively; ρ( ) is the 
autocorrelation function (ACF), which depends only 
on the lag distance v = (vx, vy, vz) = | t' - t | between the 
points t and t'.

Eqs. (7a) and (7b) concern only the statistical 
property at a particular point, called the point property 
of the soil. On the other hand, Eq. (7c) describes the 
cross moment at two particular locations, called the 
cross point property of the soil. The point properties 
such as the coefficient of variation (COV) and the 
distribution are now well documented (Lumb 1966, 
1970, 1974; Hooper and Butler 1966; Schultze 
1975; Matsuo 1976; Krizek et al. 1977; Baecher et 
al. 1980; Webb 1980; Lee et al. 1983; Chowdhury 
1984). However, information regarding the cross point 
properties is relatively sparse.

Soils generally exhibit plastic behaviour, although 
to a differing degree. As a result, the stability of a 
soil slope tends to be controlled by the averaged soil 
strength rather than the soil strength at a particular 
location along the slip surface. Also, the disturbing 
force acting on the slope is related to the average 
density of the soil. The spatial average of a soil prop
erty x(t) is defined as

		  (8)

Where V can be the length L, area A, or the volume 
V of the spatial domain depending on the case. The 
mean, variance, and covariance of the spatial averages 
can be described by (Vanmarcke 1984; Li and White 
1987a)

		  (9a)

		  (9b)

		  (9c)

where ε~v denotes the spatial average of the random 
component ε(t) over the domain V, Γ2( ) and B( ) are 
called respectively the variance reduction and the 
covariance factor. Γ2( ) is bounded by 0 and 1, that is 
to say, the variance of the averaged soil property is in 
general less than the variance of the point property. 
This effect arises because of the compensating effects
as a result of spatial averaging. For instance, low 
values of strength at some locations are compensated 
by larger values at other locations within the spatial 
domain. In consequence, the fluctuation of the average 
strength and hence the variance are smaller. The 

Figure 2. Interslice force function for Morgenstern and 
Price’s method
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reduction of variance due to spatial averaging depends 
on the rate of decay of the ACF. For ACF’s that decay 
rapidly with lag distance (i.e., soil properties with a 
small correlation distance or scale of fluctuation), the 
variance reduction is significant and vice versa. For 
some natural soils, the correlation distance of soil 
properties is small and the soil properties become 
largely uncorrelated for lag distances greater than 
1-2 m (Li and White 1987a). The reduction of variance
due to spatial averaging can therefore be appreciable
without the averaging dimension being very large.
Although it may be very discomforting to realize that
a COV of greater than 40% (point property) is not
uncommon for the undrained shear strength of soils
(Alonso 1976), the variability of the average shear
strength, which governs the performance of the slope,
is usually much less than that of the point variability.

Eq. (9) assumes that the mean value of the soil 
property is known. In practice, it has to be estimated 
from samples taken at different locations ti of the field. 
Thus

(10)

where the arrow means “estimated by” and k is the 
total number of samples. The spatial average of the 
soil property will then be estimated by the sample 
spatial average x—v, defined by

(11)

The expected value of x—v is

(12)

Therefore, x—v is an unbiased estimator for the mean
value of the spatial average x~v. The variance of x—v is
expressed as

(13)

For simplicity, the correlation of the soil property at 
the sample points ti and the soil property within the 
spatial domain V is neglected and Eq. (13) becomes

(14)

If ti are sufficiently wide apart, the correlation of the 
soil property among the sample points can also be 
neglected and the variance of the sample mean can be 
approximated by

(15)

Therefore, var { } can be estimated by 

(16)

where s2 is the sample variance of the test results. 
Eq. (16) indicates that the overall uncertainty for the 
estimated average soil property consists of two parts 
- the inherent variability associated with the point-to-
point variation of the soil property in the field and the
sampling uncertainty associated with the estimation
of the trend component. The latter is sometimes
not recognized in current literature. Similarly, the
covariance of the sample spatial averages is given by

(17)

Factor of Safety Approach

The safety of slopes is often assessed by means of the 
factor of safety, F, calculated using a deterministic 
procedure and (typically) mean values of input 
parameters. Methods are now available whereby the 
value of F can be calculated very efficiently to the 
required precision (Li and White 1987c). Despite 
the simplicity of the FOS approach, it has several 
shortcomings, which can be discerned by means of a 
simple example of a cohesive slope as shown in Figure 
3. The first disadvantage of the FOS approach is the
"variance" of the definition of F, that is, the value of 
F depends on how F is defined (Höeg and Murarka 
1974; Chae 1967). With the notations given in Figure 3, 
the FOS is usually defined as

(18)

where c— is the mean cohesive strength of the soil. 
However, some engineers prefer to treat the soil mass 
W2 as contributing to the stability of the slope and 
define the FOS as
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6

(19)

There can be a substantial  difference for the 
computed value of F depending on whether the 
term W2d2 appears in the numerator as part of the 
resisting moment or in the denominator as part of 
the overturning moment, as is indicated in Table 1 
for some actual slope designs. The same argument 
applies to the way pore-water pressure is treated in 
slope stability analysis. The pore-water pressure term 
can appear either in the numerator or the denominator 
depending on whether it is treated as a loading to the 
system or as a reduction to the strength term.

Figure 3. Details of a cohesive slope

The second undesirable property of the FOS 
approach is that it is not a consistent measure of 
structural safety. Table 2 shows the failure probability 
of  the  s lope in  Figure  3  assuming Gaussian 
distributions and independence for the average shear 
strength and soil density. VR and VS in the table 
denote respectively the COV of the resisting and 
the disturbing moment. A wide range of values of Pf 
can be obtained for the same value of F. Therefore, 
specifying a constant value of FOS cannot ensure 
a consistent risk level of slopes. As a corollary, it is 
impossible to say how much safer a slope becomes as 
the FOS is increased.

Table 2. Variation of Pf with variability of soil 
properties for a constant FOS of 1.5 (after Lumb 1983)

VR VS Pf

0.2 0.2 8.3×10−2

0.2 0.05 5.0×10−2

0.1 0.2 2.3×10−2

0.1 0.05 7.8×10−4

0.05 0.2 9.6×10−3

0.05 0.05 1.4×10−8

Figure 4 shows the variation of Pf with F assuming 
that the soil density is constant and the cohesive shear 
strength is a Gaussian variate with a typical value of 
0.3 for the COV. The variance reduction factor for the 
length of the slip surface is represented by Γ2(L). As 
indicated in this example, the value of Pf is sensitive 
to the value of F within the typical range of design 
FOS (1.2 − 1.5) when the variance reduction factor 
is smaller than about 0.3, which is not uncommon for 
real slopes.

Because of the above drawbacks, the factor of 
safety of a slope is not a satisfactory risk measure. 
A partial FOS approach has been proposed as an 
alternative to the overall FOS approach (Brinch 
Hansen 1967; Lumb 1970; Meyerhof 1970, 1984). 
However, it cannot eliminate the shortcomings of the 
FOS approach.

Table 1. Variation of factor of safety (after Chae 1967)

Case
Factor of safety based on:

Eq. [18] Eq. [19]
1 1.57 1.22
2 1.70 1.24
3 0.63 0.75
4 0.81 0.87
5 0.74 0.83
6 0.67 0.70
8 2.00 1.67

Figure 4. Variation of failure probability with factor of 
safety (after Li and White 1987b)
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First-order Second-moment (FOSM) 
Method

Since the early 1970’s, there has been a trend towards 
use of a first-order second-moment probabilistic 
approach for analyzing the reliability of slopes. In this 
approach, the performance function is linearized by 
means of a first-order Taylor’s series approximation 
and the random parameters are characterized by their 
first two moments (hence the name). As information 
regarding the joint distribution of soil properties is 
generally not available, more rigorous probabilistic 
approaches such as the advanced FOSM method in 
structural reliability analyses (e.g., Paloheimo and 
Hannus 1974; Rackwitz and Fiessler 1978; Chen and 
Lind 1983) are difficult to use.

In current probabilistic analyses, the reliability 
index β defined by

(20)

in which µG and σG denote the mean value and 
standard deviation of the performance function G(X) 
respectively, is often used as an alternative risk 
measure to the conventional FOS (e.g., Yucemen et al. 
1973; Alonso 1976, Vanmarcke 1977b, 1980; Bergado 
and Anderson 1985). The use of β as a safety measure 
is based on the following observation:

(21)

Here, Z is a standardized variable of G(X); ψ(z) 
and Ψ(z) are respectively the probability density 
function (PDF) and the cumulative distribution 
function (CDF) of Z. As Ψ( ) is a non-decreasing 
function, a one-to-one correspondence exists between 
the failure probability and the reliability index β. All 
the uncertainties of the random variables have been 
suitably condensed into a single reliability index β. 
Provided that the reliability indices for two similar 
slopes are equal, they will have a similar risk level, 
although the variability of the random variables may 
be different in the two cases.

Knowing the first two moments of G(X) is not 
sufficient to define the PDF of Z or G(X). A Gaussian 
or lognormal distribution is usually assumed for Ψ( ).

Although the reliability index β is a consistent 
index of risk measure, it is not "invariant". Table 3 
shows the reliability indexes for different formats of 
the performance function using the FOSM method. 
R and S in the table represent respectively the total 

resisting force and the disturbing force acting on the 
slope. An examination of Table 3 shows clearly the 
property of "variance" of the reliability index β. 

Table 3. Risk format and reliability index β

G(X) β

Note: 

To circumvent this problem, Hasofer and Lind 
(1974) proposed an invariant definition for the 
reliability index. In this format, all the random 
variables X are transformed into a standardized 
parameter space Z by means of an orthogonal trans
formation such that

E{Zi} = 0;   var {Zi} = 1;   cov {Zi, Zj} = 0 (22)

Hasofer and Lind (1974) defined the reliability index 
as the minimum distance between the origin and 
the limit state surface in the transformed parameter 
space Z. To distinguish the reliability index defined 
in Hasofer and Lind’s sense from that defined by Eq. 
(20), the former will be denoted by βHL. The property 
of "invariance" for the reliability index βHL is clear 
from its definition. As an example, let us consider 
the different formats of G(X) in Table 3. For the first 
format, the limit state surface is given by

R - S = 0	 (23)

The limit state surface for the second format is 
described by (R/S) − 1 = 0, which, after simplification, 
yields the same equation as Eq. (23). The same is true 
for the third format. Since the limit state surfaces of 
these formats are the same, the minimum distance 
between these surfaces to the origin in the Z-space, 
and hence βHL, will be equal.

The point Zd on the transformed limit state surface 
with the minimum distance from the origin in the 
Z-space will be called the design point in the Z-space.
Likewise, the inverse mapping of Zd in the X-space will
be called the design point in the X-space, designated as
Xd.
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Figure 2 : Proposed societal risk criteria for landslides 
and boulder falls from natural terrain (Option A)

The alternative Option B (Figure 3) is similar to 
Option A, except that it is based on a 3-tier approach, 
incorporating a 'broadly acceptable' zone.

If the random parameters are jointly Gaussian 
and the performance function is linear, the failure 
probability is simply related to the reliability index βHL 
by (Leporati 1979)

(24)

where Φ( ) is the CDF of a standard Gaussian 
variate. However, Eq. (24) is commonly used for other 
cases of nonlinear performance functions and (or) 
non-Gaussian parameters to give a rough estimate of 
the magnitude of the failure probability. It can also be 
proved that if the performance function is linear, the 
reliability indices defined in the conventional sense β 
and in Hasofer and Lind's sense βHL are equal (Li and 
White 1987b).

Although the use of βHL has gained popularity in 
structural reliability analyses, it is less commonly used 
in geotechnical reliability analyses. It is considered 
that the reliability index βHL is preferable to the 
conventional reliability index β. The former has the 
advantage of being an invariant index. Values of βHL 
can be compared directly even though they may be 
derived from different formats of the performance 
function. Therefore, as far as codified design is 
concerned, a suitable minimum value of βHL can 
be specified. The exact format of G(X) need not be 
stipulated in the code as a result of the invariance of 
βHL.

The reliability index βHL for a slope can be 
calculated using the iterative algorithm by Parkinson 
(1978). Denote the random variables collectively by 
X = (X1, X2, ... , Xl) where Xi can be , γ~i, ti etc. If X(j)

represents the jth estimate of the design point in the 
X-space, Xd, satisfying the limit state equation G(X(j))
= 0, the (j+1)th estimate can be obtained using the
iterative equation

(25)

where

(26)

(27)

in which X— is the mean vector, µ i represents the
mean value of Xi, and Vx is the covariance matrix 
for X. The subscript j in Eq. (27) indicates that the 
partial derivatives are taken at the jth trial point X(j). 
The superscript T means the transpose of a matrix. 
It should be noted that the (j+1)th estimate obtained 
using Eq. (25) does not necessarily satisfy the limit 
state equation G(X) = 0. Therefore, it must be adjusted 

before it can be input into Eq. (25) for the next 
iteration. The adjustment can conveniently be done 
by choosing all of the parameter values but one to be 
the same as those of the unadjusted vector X(j+1); the 
remaining parameter value can be derived from the 
limit state equation. In this paper, the average cohesion 
at the nth slice is chosen arbitrarily to be the parameter 
for adjustment. The reliability index βHL for the jth trial 
estimate X(j) is given by (Parkinson 1978)

(28)

where | | denotes absolute value. Convergence of the 
iterative procedure can be checked by whether the 
difference between successive values of βH

(j)
L or X(j) 

is small. The partial derivatives of the performance 
function required for the implementation of the 
iterative algorithm are given in the Appendix.

It should be remembered that the exact mean values 
µi are not known. In practice, they are estimated using 
the sample mean values X—i. Consequently, the variance 
and covariance of the soil properties have to be 
calculated using Eqs. (16) and (17) for the generation 
of the covariance matrix VX.

Note that the performance functions Gm(X) and 
Gf(X) are linear with respect to c~i, γ

~
i , u

~
i etc. and are 

only nonlinear with respect to ti. Therefore, for ø = 0 
analyses, the algorithm will always converge to the 
design point Xd after the first iteration independent 
of the initial values used for the parameters. For c-ø 
slopes, the performance function is nonlinear with 
respect to ti. A good initial estimate for the design point 
Xd can be obtained using the following procedure. 
Initially, ti is assumed to be deterministic (i.e., the 
variance of ti is taken to be zero) and is assigned 
a value equal to its mean value. By iterating once 
using Eq. (25), the design point for the “conditioned” 
performance function is obtained. This conditioned 
design point serves as a robust starting point for the 
general iteration.

Example Problems

In this section, the implementation of the probabilistic
approach using βHL will be depicted by means of an
illustrative example. The method is then applied to a
case study of the Selset landslide reported in Skempton
and Brown (1961). The assumptions used in the
following discussions are mentioned first.
1. In the analysis, only c~i', γ

~
i, ti and u~i are taken as

random variables. Other loads (Ea, pi, ΔPi, ΔQi,
etc) are taken as zero.

2. Little has been published in the current literature
on the joint PDF of soil properties. Under
controlled conditions such as constant soil density
and moisture content, Matsuo and Kuroda (1974)
observed a strong negative correlation between
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the strength components c and t. However, for 
natural soils, evidence (Lumb 1970; Schultze 
1975) shows almost zero correlation between 
the strength parameters. For practical purposes, 
the strength components c' and t can be regarded 
as independent.  The assumption of mutual 
independence will simplify the computation and 
also err on the conservative side. The influence 
of the variability of soil density on Pf of slopes is 
usually small (Alonso 1976). This is due to the 
fact that the variability of soil density is small. 
Furthermore, the averaging dimension for γi is 
large. The variability of the average soil density 
is further reduced. In consequence, the cross 
correlation of γi with c’ and t, which is of secondary 
importance, can be neglected without incurring 
significant errors.

3. The soil properties are modelled as random fields.
The variance and covariance for the sample spatial
averages for c—i' and γ—i are evaluated using the
formulae given in Li and White (1987a). To be
consistent with the assumption used in deriving
the performance function Gm(X) and Gf(X), ti is
represented by the point property at the centres of
the bases of the slices.

4. Little is known about the statistical properties,
especially the correlation structure, of pore-water
pressure. It is speculated that u~i may consist of
two random components with different scales
of fluctuation. The first component is governed
by the changes in the regional water system and
therefore a larger scale of fluctuation is expected
for this component. The second component is
associated with the local variation of hydrological
properties of the soil such as the permeability
and the infiltration capacity and a smaller scale
of fluctuation is expected. In theory, the pore-
water pressure can also be modelled as random
fields. Over the past decade or so, some conceptual
models have been proposed along these lines, for
example, Smith and Freeze (1979a, 1979b), Chirlin
and Dagan (1980), Andersson and Shapiro (1983),
Kitanidis and Vomvoris (1983), and Bergado and
Anderson (1985). The Monte Carlo simulation is
usually used as the basic technique for generating
the statistical properties of the pore-water pressure.
This procedure will involve repeated calculations
using finite element programs, for instance, and
will no doubt be costly to perform. More work
needs to be done before these theoretical models
can be put into practical use. In this work, a simple
model is used. The pore-water pressure ratio ru
describes u~i:

(29)

where γ—i is the mean soil density. Pending more 
information on the correlation structure of pore-

water pressure, the pore-water ratio ru is assumed 
to be perfectly correlated within the slope, i.e., ru 
is regarded as a single variable. Furthermore, the 
cross correlation of ru with other soil properties is 
neglected for simplicity.
Because of the above assumptions, the covariance 
matrix of X has the form

(30)

where c~i'  denotes the collection of c~i' and t  the 
collection of ti, etc.

The geometry of the worked example is shown 
in Figure 5 and the input parameters are given in the 
following table:

Parameter Mean COV
c' 18 kPa 20%
γ 18 kN/m3 5%
t tan 30° 10%
ru 0.2 10%

A number of two-dimensional separable ACF's as 
listed in Table 4 are used. The parameter δ represents 
the scale of fluctuation in the respective directions. 
It is a measure of the spatial extent within which soil 
properties show strong correlation (Vanmarcke 1984). 
A large value of δ implies that the soil property is 
highly correlated over a large spatial extent, resulting 
in a smooth variation within the soil profile. On the 
other hand, a small value of δ will indicate that the 
fluctuation of the soil property is large. Although 
different values of δ can be used for different soil 
properties, they are assumed to be equal in this 
example. Unless stated otherwise, results presented 
below are based on type I ACF and the scales of 
fluctuation in the x- and y-directions are assumed to 

Figure 5. Geometry of the illustrative example
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be equal, i.e., δx = δy = δ. The number of samples k is 
taken to be 8. Ten slices are used throughout and the 
effect of tension cracks is neglected. Two different 
interslice force functions as shown in Figure 2 are used 
in the analysis.

Figure 6a shows the typical variation of the 
reliability index βHL with λ for the slip surface shown 
in Figure 5. βH

m
L and βH

f
L represent the reliability index 

βHL based on the performance functions Gm(X) and 
Gf(X) respectively. The intersection point of the curves 
gives the so-called “rigorous” solution, βH

r
L. The 

corresponding value of λ is designated as λmf. At this 
point, the values of the failure probability predicted 
by the two performance functions are equal. A few 
interesting points need to be made.
1. For all the data points in Figure 6, a maximum

of six iterations are found to be sufficient to give
a tolerance of 10−8. The rate of convergence is
extremely fast.

2. The variation of βH
m

L with λ is much smaller
than that of βH

f
L, as typified by Figure 6. Similar

observations have also been reported elsewhere
for the variation of FOS with λ (e.g., Li and White
1987c). Therefore, the value of βH

m
L based on Gm(X)

and a “reasonable” value of λ will usually be
sufficiently close to the "rigorous" solution. βH

f
L is

not recommended for use as an approximation to 
the rigorous solution βH

r
L because of its sensitivity 

to λ .
To calculate βH

r
L , λ has to be adjusted to achieve the 

equality of βH
m

L and βH
f
L. This can conveniently be done 

using the procedure of inverse rational approximation. 
Define a function

(31)

The rigorous solution will then be given by the root 
of the equation q(λ) = 0. Figure 6b shows the variation 
of the function q(λ) for two different interslice 
functions. The smoothly varying monotonic variations 
shown in the figure are typical. It is therefore possible 
to define an inverse for q(λ), designated as λ = ω(q). 
Initially, the values qi = q(λi), i = 1, m are calculated 
for m different values of λ. The inverse function ω(q) 
can then be approximated by a rational polynomial 
ηm(q) expressed in the following forth of a continued 
fraction:

(32)

The coefficients ai in Eq. (32) can be computed 
using the procedure described in Table 5.

Since the rigorous solution is given by ω(0), 
an approximate solution for λmf based on a m-term 
continued fraction, designated as λm+1, can be obtained 
using ηm(0). The corresponding value of q(λm+1) is then 
computed. With this new set of interpolation points  
(λm+1, qm+1), a better approximation to the inverse 
function can be obtained by lengthening the continued 
fraction to (m+1) terms. The above procedure is 
then repeated until the required tolerance for q(λ) is 
achieved. The algorithm can be invoked using two 
starting trial points. As it turns out, the procedure of 
inverse rational approximation gives fast convergence 
for the calculation of the rigorous solution as typified 
by the results in Table 6 for the slip surface shown in 
Figure 5.

Figure 7 shows a comparison of the value of βH
r

L 
obtained from different interslice force functions f(x) 
and ACF’s. It can be observed that the values of βH

r
L 

obtained from the constant and half-sine interslice 
force functions are essentially the same, even though 
the two functions are drastically different. The 
insensitivity of Morgenstern and Price’s method to 
the assumption used for the interslice forces is well 
established for the FOS calculations (e.g., Morgenstern 
and Price 1965; Fredlund and Krahn 1976). It is 
interesting to know that the same characteristic still 
exists for the reliability index βH

r
L. Figure 7 also 

indicates that the reliability index βH
r

L is not very 
Figure 6. (a) Variation of βHLwith λ; (b) variation of 
q(λ) with λ
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sensitive to the type of ACF’s used especially when 
the scale of fluctuation is small compared with the 
dimension of the slip surface. It has an important 
implication, as the exact form of the ACF is difficult to 
be estimated without a large number of samples. The 
scale of fluctuation has already captured the essential 
correlation structure of the soil properties. Because 
of its simplicity, type I (simple exponential) ACF is 

recommended for general use.
Figure 8 shows the variation of βH

r
L with the scales 

of fluctuation for the slip surface shown in Figure 5. 
A unit function is taken for f(x). It can be seen that βHL 
and hence the failure probability are very sensitive 
to the scales of fluctuation. Therefore, more attention 
must be paid to the estimation of this important 
parameter in soil investigation. Over the years, 
numerous analyses have appeared in the literature in 
which the soil properties in the field are assumed to be 
single random variables. This is equivalent to saying 
that the scale of fluctuation is infinitely large. As 
indicated in Figure 8, it will yield a smaller value of 
βH

r
L and the failure probability will therefore be grossly 

overestimated. 
Figure 9 shows the locations of the critical slip 

circle with minimum FOS and βH
r

L. The function 
f(x) is taken to be a half-sine function. The figure 
indicates that the locations of the critical slip circles 
with minimum FOS and βH

r
L are not coincident, but 

very close to each other. A noncircular slip surface, 

Table 4. Types of autocorrelation function

Type                  Autocorrelation function

I. Simple exponential

II. Square exponential

III. Second-order autoregressive model

IV. Cosine exponential

Table 5. Coefficients of rational polynomial

a1 a2 a3 a4 

... ... ... ...

Table 6. Adjustment of λ using inverse rational 
approximation for Morgenstern and Price’s method

λ βH
m

L βH
f
L q(λ)†

0.3* 3.657788 3.257851 0.39994
1.0* 3.587350 3.987004 −0.39965

0.65012 3.636614 3.631897 0.00472
0.65425 3.636209 3.636209 −0.0000007

* Initial trial values.
†  The interslice function is taken to be half-sine

function and δ = 5 m.
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q(λ)=βH
m

L-βH
f
L

defined by four straight-line segments, has also 
been used to define the slip surface. The location of 
the critical noncircular slip surface with minimum 
βH

r
L is also shown in Figure 9. For this case of a 

homogeneous slope, the locations of the critical 
circular and noncircular slip surfaces are close, as are 
the corresponding value of βH

r
L. The observation is 

similar for other interslice force functions and ACF's. 
As the evaluation of βH

r
L requires much more effort 

than that of FOS, it is preferable to locate the critical 
slip surface with the minimum value of FOS first. The 
slip surface is then used as the initial trial surface for 
the general search for the critical slip surface with 
minimum βH

r
L.

Next, we consider a case study of the Selset 
landslide reported in Skempton and Brown (1961). 
The slip was within a deposit  of nonfissured 
overconsolidated boulder clay. No significant variation 
of mean soil properties was observed within a depth 
of 60 ft (18.3 m). The soil profile could therefore be 

modelled as a homogeneous random field. The slope 
was 42 ft (12.8 m) high with an inclination of 28°.

Eight samples were taken at different locations of 
the slope. For each sample, at least three specimens 
were prepared for drained triaxial tests. Because of 
the proximity in the field, the soil properties of the test 
specimens from each sample will be highly correlated. 
Because of this, the mean soil property determined 
from test specimens of a sample would constitute 
effectively one single sample in the statistical sense. 
Hence, a value of 8 is used for the sample size k in this 
case. Since the sample locations were far apart in the 
field, the soil properties determined from each sample 
can be regarded as independent. The variance and 
covariance of the sample spatial average can therefore 
be evaluated using Eqs. (16) and (17).

A summary of the test results is given in Skempton 
and Brown (1961), from which the following input 
parameters are derived:

Parameter Mean COV
c' 180 lb/sq ft (8.6 kN/m2) 30%
γ 139 lb/cu ft (21.8 kN/m3) 0.7
φ 32° 7%

Using a first-order Taylor’s series approximation, 
the mean value and COV of t (i.e., tan φ) are given as 
tan 32° and 9%. A mean value of 0.45 was suggested 
by Skempton and Brown (1961) as a suitable value 
for the pore-water pressure ratio ru of the slope. A 
judgemental value of 10% is assumed here for the 
COV of ru.

Figure 10 shows the variation of the failure 
probability with the height of the slope. The reliability 
index βHL is based on Gm(X) and a value of 0.6 for 
λ. The failure probability Pf is calculated using Eq. 
(24) and the minimum reliability index βHL associated
with the critical slip circle. A toe failure is assumed
throughout. It is also assumed that the mean value
and variance of ru are unaffected by a change in the
height of the slope. Since the scale of fluctuation of
the soil properties is not known, two values of δ are
used − 5 ft (1.5 m) and 15 ft (4.6 m). The results are
plotted as solid lines in Figure 10. For the actual slope
height of 42 ft (12.8 m), the failure probability of the

Figure 9. Locations of critical slip surfaces

Figure 7. Comparison of βHLfor different interslice 
force and autocorrelation functions

Figure 8. Variation of βHLwith scales of fluctuation
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slope is high (> 0.5). This is to be expected as the 
failure of the slope had indeed occurred. As the slope 
height decreases, the factor of safety increases and the 
difference in Pf given by the two values of δ becomes 
more pronounced.

Assuming that the COV of the soil properties 
remains unchanged, the slope is reanalyzed using a 
value of 30 for the sample size k. Since the sample 
size is now larger, the sampling uncertainty is reduced, 
resulting in a smaller value of Pf. Note that the 
increase in reliability of the slope due to an increase in 
sample size is greater for the case of δ = 5 ft (1.5 m). 
In fact, it is generally true that increasing the sample 
size to reduce the failure probability is more effective 
for soils with a smaller value of δ than for those with a 
larger value of δ.

In the design of soil slopes, results like Figure 10 
can be obtained based on the prior knowledge of the 
soil properties. This kind of information would be very 
useful in the design stage of identifying the critical 
parameters to which more attention should be paid and 
for determining a suitable sample size for soil testing.

Discussion

What has been presented here is a general probabilistic 
approach of slope design based on a two-dimensional 
limit equilibrium stability model. However, the 
discussion will not be complete without mentioning 
the limitations of the present approach.

A two-dimensional stability model is used herein. 
This is equivalent to saying that soil properties are 
perfectly correlated in the transverse direction. The 
consequence of such an assumption remains a question 
of further inquiry. But no doubt a three-dimensional 
analysis, especially for c-ø slopes, will be much 
more complicated than a two-dimensional analysis 
both in terms of the formulation of the performance 
function and the generation of the covariance matrix 
of the spatial average soil properties. No detailed 
probabilistic study on three-dimensional soil slopes 
has yet been published in the literature for c-ø slopes. 
However, attempts have been made to analyze a three-
dimensional ø = 0 slope using a probabilistic approach 
(Vanmarcke 1977b, 1980).

In a limit equilibrium analysis, soils are assumed 
to be perfectly plastic materials. On this basis, the 
spatially averaged soil properties will be the pertinent 
parameters to be used in the analysis. However, for 
strain-softening soils, the effect of “brittle” failure 
cannot be overlooked. In a conventional deterministic 
analysis in which the soil properties are assumed 
to be constant, the yield zone always initiates at the 
location with the highest stress level. However, the 
picture will be somewhat different when it is looked 
at from a probabilistic point of view. Since soil 
properties vary from point to point within a slope, 
there may be a chance that the soil strength is very low 
at a location where the stress level is not the highest. 
Failure can well initiate from this point instead of the 
most highly stressed region. On the other hand, if it so 
happens that the soil strength is the lowest at the most 
highly stressed region, the yield zone may propagate 
catastrophically to the adjoining area, leading to a 
sudden failure of slope.

The spatial variability of soil has therefore two 
opposing consequences. On the one hand, the spatial 
variability reduces the variance of the average soil 
properties and hence the failure probability of slopes. 
On the other hand, spatial variability of soil will 
increase the likelihood of progressive failure, as failure 
can initiate at any location along the slip surface. 
Which effect will dominate depends on the strain-
softening behaviour of the soil. At present, study on 
this topic is limited. Further discussion is given in 
Tang et al. (1985).

So far, discussion has been focused on the failure 
probability for a particular slip surface. In fact, there 
are infinitely many admissible slip surfaces, although 
the failure probability for each of them may differ. A 
slope should be considered as a system in series. Each 
component represents a feasible slip surface. Failure of 
any slip surface (component) will imply the failure of 
the slope (the system). The system failure probability 
Pfs of a slope is bounded by (Cornell 1967)

(Pf)max  ≤ Pfs ≤ 1	 (33)

Figure 10. Variation of failure probability with height 
of slope (Selset Landslide) (1 ft = 0.305 m)

Finish.indb			482 2007/8/17			11:08:52	AM

Li
, K

.S
. &

 L
um

b,
 P

., 
Pr

ob
ab

ili
st

ic
 d

es
ig

n 
of

 sl
op

es
, C

an
ad

ia
n 

G
eo

te
ch

ni
ca

l J
ou

rn
al

, 
vo

l. 
24

, n
o.

 4
, p

p 
52

0-
53

5 
©

 C
an

ad
ia

n 
Sc

ie
nc

e 
Pu

bl
is

hi
ng

 o
r i

ts
 li

ce
ns

or
s.



14

where (Pf)max is the failure probability for the most 
critical slip surface. If high correlation exists between 
different components, the system failure probability 
will be close to the lower probability bound. Studies 
by Morlá Catalán (1974) indicate that the system 
failure probability of a slope is substantially different 
from the failure probability for the most critical slip 
surface for the normal range of correlation existing 
between different slip surfaces. However, gross 
assumptions have been made by Morlá Catalán (1974) 
in the analysis, the consequence of which has yet to be 
observed. More research needs to be done before any 
conclusive remarks can be made.

Although there are still problems that remain to 
be solved regarding the probabilistic modelling of 
soil behaviour and the methodology for reliability 
calculations, it is pedantic to delay the use of the 
available probabilistic methods, especially the FOSM 
method, for want of a complete probabilistic analysis. 
The main advantage of using a probabilistic approach 
is to provide an operational procedure by which the 
uncertainties of the design can be considered in the 
analysis. It also helps the engineer to quantify his 
experience by way of building up his knowledge 
on the values of the statistical parameters such as 
the COV or scales of fluctuations of the local soils. 
These judgemental values can always be updated 
and uncertainties sharpened when more information 
becomes available. Moreover, experience is more 
easily transmitted to an inexperienced engineer by 
conveying to him the likely values of the statistical 
parameters of the soil properties with which he can 
perform his own uncertainty analysis than by just 
telling him what magic number should be used for the 
factor of safety.

Conclusion

This paper outlines a procedure of probabilistic slope 
design using the FOSM method and Morgenstern and 
Price’s method as the stability model. The procedure 
can be applied to the analysis of the stability of a 
general slip surface. The reliability index βHL is also 
used in lieu of the conventional reliability index β. 
The former has the advantage of being an invariant 
index of risk measure. Values of βHL can be directly 
compared even though they may be derived from 
different formats for the performance function.

The reliability index βHL can also be thought of as a 
standardized safety measure that suitably summarizes 
the uncertainties involved in the analysis. On this 
basis, alternative designs can be compared directly, 
whereas the comparison of FOS is debatable. The 
reliability index βHL can also be related nominally to 
the failure probability by Eq. (24).

For a given interslice force function, investigations 
show that the reliability index βH

m
L based on moment 

equilibrium is much less sensitive to λ than the 
reliability index βH

f
L based on force equilibrium. 

Results also indicate that the rigorous reliability index   
βH

r
L is not sensitive to the interslice force function used 

in the analysis. Another encouraging observation is the 
insensitivity of βH

r
L to the ACF used. The correlation 

structure of a soil property is adequately described by 
the scale of fluctuation of the property. However, the 
influence of this parameter on the reliability index is 
most significant.

The critical failure surfaces with the minimum 
FOS and reliability index are close. Consequently, the 
location of the critical slip surface with the minimum 
FOS can be used as a good initial trial location for the 
search for the critical slip surface with the minimum 
reliability index.

Acknowledgements

The authors wish to acknowledge the Department of 
Civil Engineering, University of Hong Kong, Hong 
Kong, and the Department of Civil Engineering, 
University College, the University of New South 
Wales, Australia, where the work reported has been 
carried out. The support from I. K. Lee and W. 
White, Head and Senior Lecturer, respectively, of the 
Department of Civil Engineering, University College, 
the University of New South Wales, is gratefully 
acknowledged.

References

A-Grivas, D., and Nadeau, G. (1979). Probabilistic
seismic stability analysis − a case study. Report
No. CE-79-1, Department of Civil Engineering,
Rensselaer Polytechnic Institute, Troy.

A-Grivas, D., Howland, J., and Tolcser, P. (1979).
A probabilistic model for seismic slope stability
analysis . Report No. CE-78-5, Department of Civil
Engineering, Rensselaer Polytechnic Institute,
Troy.

Alonso, E. E. (1976). Risk analysis of slopes and its 
application to slopes in Canadian sensitive clays . 
Géotechnique, 26:453-472. 

Andersson, J., and Shapiro, A. M. (1983). Stochastic 
ana lys is  of  one-dimensional  s teady s ta te 
unsaturated flow: a comparison of Monte Carlo and 
perturbation methods . Water Resources Research, 
19:121-131.

Baecher, G. B., Chan, M., Ingra, T. S., Lee, T., and 
Nucci, L. R. (1980). Geotechnical reliability of 
offshore gravity platforms . Report No. MITSG 
80-20, Massachusetts Institute of Technology,
Cambridge.

Bao, C. G., and Yu, L. (1985). Probabilistic method 
for analyzing the stability of slope under special 

Finish.indb			483 2007/8/17			11:08:52	AM

Li
, K

.S
. &

 L
um

b,
 P

., 
Pr

ob
ab

ili
st

ic
 d

es
ig

n 
of

 sl
op

es
, C

an
ad

ia
n 

G
eo

te
ch

ni
ca

l J
ou

rn
al

, 
vo

l. 
24

, n
o.

 4
, p

p 
52

0-
53

5 
©

 C
an

ad
ia

n 
Sc

ie
nc

e 
Pu

bl
is

hi
ng

 o
r i

ts
 li

ce
ns

or
s.



15

conditions . Proc., Conference on Strength and 
Constitutive Relation of Soils, Wunan (in Chinese).

Bergado, D. T., and Anderson, L. R. (1985). Stochastic 
analysis of pore pressure uncertainty for the 
probabilistic assessment of the safety of earth 
slopes . Soils and Foundations, 25(2):87-105. 

Brinch Hansen, J. (1967). The philosophy of foundation 
design: design criteria, safety factor and settlement 
limits . Proc., Symposium on Bearing Capacity 
and Settlement of Foundations, Duke University, 
Durham.

Chae, Y. S. (1967). On the stability of clay masses: 
How safe are the “Factors of Safety”? Proc., 3rd 
Pan-American Conference on Soil Mechanics and 
Foundation Engineering, Caracas, 2:255-270.

Chen, X., and Lind, N. C. (1983). Fast probability 
integration by three-parameters normal tail 
approximation . Structural Safety (Amsterdam), 
1(4):269-276.

Chirlin, G. R., and Dagan, G. (1980). Theoretical 
head varigrams for steady flow in statistically 
homogeneous aquifers . Water Resources Research, 
16:1001-1015.

Chowdhury, R. N. (1981). Probabilistic Approaches 
to Progressive Failure, First Report. University of 
Wollongong, Wollongong.

Chowdhury, R. N. (1984). Recent developments in 
landslide studies: probabilistic methods -state-of-
the-art report . Proc., 4th International Symposium 
on Landslides, Toronto, 1:209-228.

Cornell, C. A. (1967). Bounds on the reliability of 
structural systems . Journal of the Structural 
Division, ASCE, 93(ST1):171-200.

Félio, G. Y., Lytton, R. L., and Briaud, J. L. (1984). 
Statistical approach to Bishop’s method of slices . 
Proc., 4th International Symposium on Landslides, 
Toronto, 2:411-415.

Fredlund, D. G., and Krahn, J. (1976). Comparison 
of slope stability methods of analysis . Proc., 29th 
Canadian Geotechnical Conference Slope Stability, 
The Canadian Geotechnical Society, Pt. VIII:57-74.

Hasofer, A. M., and Lind, N. C. (1974). Exact and 
invariant second moment code format . Journal 
of the Engineering Mechanics Division, ASCE, 
100:111-121.

He, X. C., and Wei, T. D. (1979). Application of 
probability and statistics in soil engineering . 
Soil Mechanics: Principles and Computations. 
Vol. 2, East China Technical University of Water 
Resources, Hydraulic and Electricity Publishing 
Co., Nanjing, 255-292 (in Chinese.)

Höeg, K., and Murarka, R. P. (1974). Probabilistic 
analysis and design of a retaining wall . Journal 
of the Geotechnical Engineering Division, ASCE, 
100:349-365.

Hooper, J. A., and Butler, F. G. (1966). Some 
numerical results concerning the shear strength of 
London Clays . Géotechnique, 16:282-304.

Kitanidis, P. K., and Vomvoris, E. G. (1983). A 
geostatistical approach to the inverse problem 
in groundwater modeling (steady state) and one-
dimensional simulations . Water Resources 
Research, 19:677-690.

Krizek, R. J., Corotis, R. B., and El-Moursi, H. H. 
(1977). Probabilistic analysis of predicted and 
measured settlements . Canadian Geotechnical 
Journal, 14:17-33.

Lee, I. K., White, W., and Ingles, O. G. (1983). 
Geotechnical Engineering. Pitman, Boston.

Leporati, E. 1979. The Assessment of Structural 
Safety. Research Studies Press, Forest Grove.

Li, K. S., and White, W. (1987a). Probabilistic 
characterization of soil profiles . Research Report 
No. R-19, Department of Civil Engineering, 
University College, Australian Defence Force 
Academy, The University of New South Wales, 
Canberra.

Li, K. S., and White, W. (1987b). Probabilistic 
approaches to slope design . Research Report No. 
R-20, Department of Civil Engineering, University
College, Australian Defence Force Academy, The
University of New South Wales, Canberra.

Li, K. S., and White, W. (1987c). A unified solution 
scheme for the generalized procedure of slices 
in slope stability analysis . Research Report No. 
R-21, Department of Civil Engineering, University
College, Australian Defence Force Academy, The
University of New South Wales, Canberra.

Lumb, P. (1966). The variability of natural soils . 
Canadian Geotechnical Journal, 3:74-97.

Lumb, P. (1970). Safety factors and the probability 
distribution of soil strength. Canadian Geotechnical 
Journal, 7:225-242.

Lumb, P. (1974). Application of statistics in soil 
engineering . Soil Mechanics - New Horizons, I. K. 
Lee, Editor, Newnes-Butterworth, London, 44-111.

Lumb, P. 1983. Statistical soil mechanics . Proc., 7th 
Asian Regional Conference on Soil Mechanics and 
Foundation Engineering, Haifa, 2:67-81.

Matsuo, M. (1976). Reliability in embankment 
design . Research Report R76-33, Department 
of Civil Engineering, Massachusetts Institute of 
Technology, Cambridge.

Matsuo, M., and Kuroda, K. (1974). Probabilistic 
approach to design of embankments . Soils and 
Foundations, 14:1-17. 

Meyerhof, G. G. (1970). Safety factors in soil 
mechanics . Canadian Geotechnical Journal, 
7:349-355.

Meyerhof, G. G. (1984). Safety factors and limit states 
analysis in geotechnical engineering . Canadian 
Geotechnical Journal, 21:1-7. 

Morgenstern, N. R., and Price, V. R. (1965). The 
analysis of the stability of general slip surfaces . 
Géotechnique, 15:79-93. 

Morlá Catálan, J. A. (1974). System reliability of earth 

Finish.indb			484 2007/8/17			11:08:52	AM

Li
, K

.S
. &

 L
um

b,
 P

., 
Pr

ob
ab

ili
st

ic
 d

es
ig

n 
of

 sl
op

es
, C

an
ad

ia
n 

G
eo

te
ch

ni
ca

l J
ou

rn
al

, 
vo

l. 
24

, n
o.

 4
, p

p 
52

0-
53

5 
©

 C
an

ad
ia

n 
Sc

ie
nc

e 
Pu

bl
is

hi
ng

 o
r i

ts
 li

ce
ns

or
s.



16

slopes: a first passage approach . M.Sc. thesis, 
Massachusetts Institute of Technology, Cambridge.

Paloheimo, E., and Hannus, M. (1974). Structural 
design based on weighted factiles . Journal of the 
Structural Division, ASCE, 100(ST7):1367-1378.

Parkinson, D. B. (1978). Solution of second-moment 
reliability index . Journal of the Engineering 
Mechanics Division, ASCE, 104:1267-1275.

Rackwitz, R., and Fiessler, B. (1978). Structural 
reliability under combined random load sequences. 
Computers and Structures, 9:489-494.

Schultze, E. (1975). Some aspects concerning 
the application of statistics and probability to 
foundation structures . Proc., 2nd International 
Conference on Applications of Statistics and 
Probability to Soil and Structural Engineering, 
Aacher, 457-494.

Sivandran,  C. ,  and Balasubramaniam,  A.  S . 
(1982). Probabilistic analysis of stability of 
embankments on soft Bangkok Clay . Proc., 4th 
International Conference on Numerical Methods in 
Geomechanics, Edmonton, 2:723-730.

Skempton, A. W., and Brown, J. D. (1961). A landslide 
in Boulder Clay at Selset, Yorkshire. Géotechnique, 
11:280-293.

Smith, G. N. (1985). The use of probability theory to 
assess the safety of propped embedded cantilever 
retaining walls . Géotechnique, 35:451-460.

Smith, L., and Freeze, R. A. (1979a). Stochastic 
analysis of steady state groundwater flow in a 
bounded domain - 1. One-dimensional simulations. 
Water Resources Research, 15:521-528.

Smith, L., and Freeze, R. A. (1979b). Stochastic 
analysis of steady state groundwater flow in a 
bounded domain - 2. Two-dimensional simulations. 
Water Resources Research, 15:1543-1559.

Tang, W. H., Chowdhury, R., and Sidi, I. (1985). 
Progressive failure probability of soil slopes . 
Proc., 4th International Conference on Structural 
Safety and Reliability, Japan.

Tobutt, D. C. (1982). Monte Carlo simulation methods 
for slope stability . Computers & Geosciences, 
8(2):199-208.

Tobutt, D. C., and Richards, E. A. (1979). The 
reliability of earth slopes . International Journal 
for  Numerical  and Analyt ical  Methods in 
Geomechanics, 3:323-354.

Vanmarcke, E. H. (1977a). Probabilistic modeling 
of soil profiles . Journal of the Geotechnical 
Engineering Division, ASCE, 103:1237-1246.

Vanmarcke, E. H. (1977b). Reliability of earth slopes . 
Journal of the Geotechnical Engineering Division, 
ASCE, 103:1247-1265.

Vanmarcke, E. H. (1980). Probabilistic stability 
analysis of earth slopes . Engineering Geology, 
16:29-50.

Vanmarcke, E. H. (1984). Random Field Analysis and 
Synthesis. M.I.T. Press, Cambridge. 

Webb, D. L. (1980). Probability analysis applied to 
the design of piles at Richards Bay . Proc., 7th 
Regional Conference for Africa on Soil Mechanics 
and Foundation Engineering, Accra, 873-878.

Young, D. S. (1985). A generalized probabilistic 
approach for slope analysis . Journal of Mining 
Engineering, 3:215-228. 

Yucemen, M. S., Tang, W. H., and Ang, A. H-S. (1973). 
A probabilistic study of safety and design of earth 
slopes . Technical Report, University of Illinois, 
Urbana.

Appendix. Partial Derivatives of the 
Performance Functions 

The following abbreviations are used in subsequent 
expressions:

(Al)

(A2)	

(a) Cohesion

(A3)

(A4) 

and

Finish.indb			485 2007/8/17			11:08:53	AM

Li
, K

.S
. &

 L
um

b,
 P

., 
Pr

ob
ab

ili
st

ic
 d

es
ig

n 
of

 sl
op

es
, C

an
ad

ia
n 

G
eo

te
ch

ni
ca

l J
ou

rn
al

, 
vo

l. 
24

, n
o.

 4
, p

p 
52

0-
53

5 
©

 C
an

ad
ia

n 
Sc

ie
nc

e 
Pu

bl
is

hi
ng

 o
r i

ts
 li

ce
ns

or
s.



17

(A5)

(A6)

(b) ΔWi

(A7)

(A8)

and

(A9)

(A10)

(A11)

(c) Pore-water pressure ratio
The pore-water pressure u~i is expressed in terms of

the pore-water pressure ratio ri, u~iΔ xi = ri Ai γ
~

i where γ~i
is the mean soil density.

(A12)

(A13)

and

(A14)

(A15)

In the illustrative examples given in the text, ri is 
assumed to be perfectly correlated, i.e., the pore-water 
pressure ratio for the whole soil mass is represented by 
a single variable, ru. The derivative of the performance 
function with respect to ru is simply given by 

 using the formulae given above.
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(d) Coefficient of internal resistance

 (A16)

(A17)

and

(A18)

(A19)

(e) ΔQi

(A20)
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(A21)

and

(A22)

(A23)

(f) End forces

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

(A31)

(A32)

(A33)

(A34)

(A35)

It is worth pointing out that once the values of the 
parameters are given, the derivatives can be calculated 
explicitly and successively using the equations given 
in this Appendix. The above formulae are applicable 
to the case where λ is not zero. If λ is zero, which 
corresponds to the case of simplified Bishop or Janbu 
analysis, ΔTi is identically zero. Therefore, all the 
derivatives of ΔTi and Ti are to be replaced by zero in 
the above expressions.
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